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Abstract

The objective of this paper is to show how ambiguity, and a decision maker (DM)’s

response to it, can be modelled formally in the context of a general decision model. We

introduce a relation derived from the DM’s preferences, called ‘‘unambiguous preference’’,

and show that it can be represented by a set of probabilities. We provide such set with a simple

differential characterization, and argue that it is a behavioral representation of the

‘‘ambiguity’’ that the DM may perceive. Given such revealed ambiguity, we provide a

representation of ambiguity attitudes. We also characterize axiomatically a special case of our

decision model, the ‘‘a-maxmin’’ expected utility model.
r 2003 Elsevier Inc. All rights reserved.
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Introduction

When requested to state their maximum willingness to pay for two pairs of
complementary bets involving future temperature in San Francisco and Istanbul
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(and identical prize of $ 100 in case of a win) 90 pedestrians on the University of
California at Berkeley campus were on average willing to pay about $ 41 for the two
bets on San Francisco temperature, and $ 25 for the two bets on Istanbul
temperature. That is, on average they would have paid almost $ 16 more to bet on
the (familiar) San Francisco temperature than on the (unfamiliar) Istanbul
temperature (Fox and Tversky [15, Study 4]).
This striking pattern of preferences is by no means peculiar to the inhabitants of

the Bay Area. Ever since the seminal thought experiment of Ellsberg [11], it has been
acknowledged that the awareness of missing information, ‘‘ambiguity’’ in Ellsberg’s
terminology, affects subjects’ willingness to bet. And several experimental papers,
the cited [15] being just one of the most recent ones, have found significant evidence
of ambiguity affecting decision making (see [25] for a survey). Though Ellsberg
emphasized the relevance of aversion to ambiguity, later work has shown that the
reaction to ambiguity is not systematically negative. Examples have been produced
in which subjects tend to be ambiguity loving, rather than averse (e.g., Heath and
Tversky [23]’s ‘‘competence hypothesis’’ experiments). However, the available
evidence does show unequivocally that ambiguity matters for choice.
The benchmark decision model of subjective expected utility (SEU) maximization

is not equipped to deal with this phenomenon: An agent who maximizes SEU
exhibits no care about ambiguity. Therefore, theory has followed experiment.
Several decision models have been proposed which extend SEU in order to allow a
role for ambiguity in decision making. Most notable are the ‘‘maxmin expected
utility with multiple priors’’ (MEU) model of Gilboa and Schmeidler [22], which
allows the agent’s beliefs to be represented by a set of probabilities, and the
‘‘Choquet expected utility’’ (CEU) model of Schmeidler [34], which allows the
agent’s beliefs to be represented by a unique but nonadditive probability. These
models have been employed with success in understanding and predicting behavior
in activities as diverse as investment [13], labor search [32] or voting [16].
The objective of this paper is to show how to model formally ambiguity, and a

decision maker (DM)’s response to it, in the context of a general decision model
(that, for instance, encompasses MEU and CEU). It is an objective that in our view
has not yet been fully achieved. In fact, as we discuss below, the existing literature
has either focused on narrower models, or has not—within the limits of a traditional
decision-theoretic setting—produced a description of ambiguity as complete as the
one offered here.
The intuition behind our approach can be explained in the context of the ‘‘3-

color’’ experiment of Ellsberg. Suppose that a DM is faced with an urn containing 90
balls which are either red, blue or yellow. The DM is told that exactly 30 of the balls
are red. If we offer him the choice between a bet r that pays $ 10 if a red ball is
extracted, and the bet b that pays $ 10 if a blue ball is extracted, he may display the
preference

rgb:

On the other hand, let y denote the bet that pays $ 10 if a yellow ball is extracted, and

suppose that we offer him the choice between the ‘‘mixed’’ act ð1
2
Þr þ ð1

2
Þy and the
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‘‘mixed’’ act ð12Þb þ ð12Þy: Then, we might observe
1
2

r þ 1
2

y!1
2

b þ 1
2

y;

a violation of the independence axiom [1]. The well-known rationale is the following:
the bet y allows the DM to ‘‘hedge’’ the ambiguity connected with the bet b; but not
that connected with r: The DM responds to the ambiguity he perceives in this
decision problem by opting for the ‘‘ambiguity hedged’’ positions represented by the

acts r and ð1
2
Þb þ ð1

2
Þy: Needless to say, we could observe a DM who displays exactly

opposite preferences: she prefers b to r and ð1
2
Þr þ ð1

2
Þy to ð1

2
Þb þ ð1

2
Þy because she likes

to ‘‘speculate’’ on the ambiguity she perceives, rather than to hedge against it.
In both cases, the presence of ambiguity in the decision problem a DM is facing is

revealed to an external observer (who may ignore the information that was given to
the DM about the urn composition) in the form of violations of the independence
axiom. By comparison, consider a DM who does not violate independence when
comparing a given pair of acts f and g: That is, fkg and for every act h and
weight l;

lf þ ð1� lÞhklg þ ð1� lÞh: ð1Þ

This DM does not appear to find any possibility of hedging against or speculating on
the ambiguity that he may perceive in the problem at hand. Such ambiguity, if at all
perceived, does not affect the comparison of f and g: the DM ‘‘unambiguously
prefers’’ f to g; which we denote by fk�g:
The derived relation k

� is the cornerstone of this paper. As we now argue, it
enables us to obtain an intuitive representation of ambiguity, which in turn yields a
simple description of ambiguity attitude. And this without imposing strong
restrictions on the DM’s primitive preference k: On the other hand, it should be
stressed from the outset that such representation is, as every representation of
preferences in decision theory, attributed to the DM. That is, it is possible that what
is going on in the DM’s mind may be quite unlike what our mathematical model
(and the interpretation that we give to it) suggests—a point to which we shall come
back after briefly reviewing our findings.

The revelation of ambiguity and ambiguity attitude

Using the traditional setting of Anscombe and Aumann [1], we consider an
arbitrary state space S and a convex set of outcomes X :1 We assume that the DM’s
preference k satisfies all the axioms that characterize Gilboa and Schmeidler [22]’s
MEU model, with the exception of the key axiom that entails a preference for
ambiguity hedging, that they call ‘‘uncertainty aversion.’’ By avoiding constraints on
the DM’s attitude with respect to hedging, we thus obtain a much less restrictive
model than MEU. (For instance, every CEU preference satisfies our axioms, while
those compatible with the MEU model are a strict subclass.) Indeed, one of the novel
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1Therefore, an ‘‘act’’ is a map f : S-X assigning an outcome f ðsÞAX to every state sAS: A ‘‘mixed’’ act

lf þ ð1� lÞh assigns to s the outcome lf ðsÞ þ ð1� lÞhðsÞAX :
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contributions of this paper is precisely showing that the preferences satisfying the
mentioned axioms have a meaningful representation.
Given such k; we derive from it the unambiguous preference relation k

� as
described in Eq. (1), and show thatk� has a ‘‘unanimity’’ representation in the style
of Bewley [3]: there is a utility u on X and a set of probabilities C (nonempty,
compact and convex) on S such that

fk�g if and only if

Z
S

uð f ðsÞÞ dPðsÞX
Z

S

uðgðsÞÞ dPðsÞ for all PAC:

That is, the DM deems f to be unambiguously better than g whenever the expected
utility of f is higher than the expected utility of g in every probabilistic scenario P in
C: The set C of probabilistic scenarios represents, as we shall argue presently, the
DM’s revealed ‘‘(perception of ) ambiguity.’’ (While we do not carry it around for
brevity’s sake, the term ‘‘perception’’ serves as a reminder to the reader that no
objective meaning is attached to C: That is, nothing precludes two DMs from
perceiving different ambiguity in the same decision problem.)
A key motivation for our interpretation of C as revealed ambiguity is the

following analogy. It is simple to see that if a DM’s preference k has a SEU
representation, the DM’s probabilistic beliefs P correspond to the Gateaux
differential of the functional I that represents his preferences.2 Intuitively, the
probability PðsÞ is the shadow price for (ceteris paribus) changes in the DM’s utility
in state s: Therefore, in the SEU case we can learn the DM’s understanding of the
stochastic nature of his decision problem—his subjective probabilistic scenario—by
calculating the derivative of his preference functional.
If k does not have a SEU representation but satisfies our axioms, the preference

functional I is not necessarily Gateaux differentiable. However, it does have a
generalized differential—a collection of probabilites—in every point. Such differ-
ential is the ‘‘Clarke differential,’’ developed by Clarke [9] as an extension of the
concept of superdifferential (e.g., [33]) to non-concave functionals. We show that the
set C obtained as the representation ofk� is the Clarke differential of I ; analogously
to what happens for SEU preferences. Thanks to this differential characterization,
we also find that, in a finite state space, C is (the closed convex hull of ) the family of
the Gateaux derivatives of I where they exist. That is, if we collect all the
probabilistic scenarios that could rationalize the DM’s evaluation of acts, we find C:
Besides its conceptual interest, the differential characterization of C is useful from

a purely operational standpoint. By giving access to the large literature on the Clarke
differential, it provides a different route for assessing the DM’s revealed ambiguity
and some very useful results on its mathematical properties.
Armed with the representation of ambiguity, we turn to the issue of formally

describing the DM’s reaction to the presence of such ambiguity. In our main
representation theorem, we show that the DM’s preference functional I can be
written so as to associate to each act f an ambiguity aversion coefficient að f Þ
between 0 and 1. The ambiguity aversion function að�Þ thus obtained displays
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significantly less variation than we might expect it to. In fact, it turns out that the
DMmust have identical ambiguity attitude for acts that agree on their ranking of the
possible scenarios in C: However, this restriction does not constrain overall
ambiguity attitude, which can continuously range from strong attraction to strong
aversion.
When the DM’s preferencek satisfies MEU, the set C is shown to be equal to the

set of priors that Gilboa and Schmeidler derive in their representation [22], and the
corresponding að�Þ is uniformly equal to 1. The opposite—i.e., að�Þ uniformly equal
to 0—happens in the case of a ‘‘maxmax EU’’ preference. We also present the
axiomatic characterization of the natural generalization of these two decision rules—
a decision rule akin to Hurwicz’s a-pessimism rule, known in the literature as the
‘‘a-MEU’’ decision rule (e.g., [27]).
A companion paper [18] analyzes some extensions and applications of the ideas

and results in this paper. In particular, we look at a simple dynamic choice setting
and show that the unambiguous preference relation allows us to characterize the
updating rule that revises every prior in the set C by Bayes’s rule—the so-called
‘‘generalized Bayesian updating’’ rule.

Discussion

It is important to comment on some limitations and peculiarities of our analysis
and terminology. We follow decision-theoretic practice in assuming that only the
decision problem (states, outcomes and acts) and the DM’s preference over acts are
observable to an external observer (e.g., the modeller). We do not know whether
other ancillary information may be available to the external observer. Hence, we do
not use such information in our analysis.
This methodological assumption entails some limitations in the accuracy of the

terminology we use. First, we attribute no perception of ambiguity to a DM who
disregards ambiguity. Indeed, it follows from our definition of unambiguous
preference that if the DM never violates the independence axiom, by definition he
reveals no ambiguity in our sense. Such DM behaves as if he considers only one
scenario P to be possible (i.e., his C ¼ fPg), maximizing his subjective expected
utility with respect to P: Of course, he may just not be reacting to the ambiguity he
perceives, but we cannot discriminate between these conditions given our
observability assumptions. As we are ultimately interested in modelling the
ambiguity as it affects behavior, we do not believe this to be a serious problem
from an economic viewpoint.
Second, we attribute every departure from the independence axiom to the presence

of ambiguity. That is, following Ghirardato and Marinacci [21] we implicitly assume
that behavior in the absence of ambiguity will be consistent with the SEU model.
However, it is well-known that observed behavior in the absence of ambiguity—e.g.,
in experiments with ‘‘objective’’ probabilities—is often at spite with the indepen-
dence axiom (again, see [25] for a survey). As a result, the relation k

� we associate
with a DM displaying such systematic violations overestimates the DM’s possible
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perception of ambiguity. His set C describes behavioral traits that may not be related
to ambiguity per se.
As extensively discussed in [21], this overestimation of the role of ambiguity could

be avoided by careful filtering of the effects of the behavioral traits unrelated to
ambiguity. But such filtering requires an external device (e.g., a rich set of events)
whose nonambiguity is primitively assumed, in violation of our observability premise.
For conceptual reasons outlined in [21], in the absence of such device we prefer to
attribute all departures from independence to the presence of ambiguity. However,
the reader may prefer to use a different name for what we call ‘‘ambiguity.’’ We hope
that it will be deemed to be an object of interest regardless of its name.
An aspect of our analysis which may appear to be a limitation is our heavy

reliance on the concept of mixed acts. Indeed, the existence of a mixture operation is
key to identifying the unambiguous preference relation. As the traditional
interpretation of mixtures in the Anscombe and Aumann framework is in terms of
‘‘lotteries over acts’’, it may be believed that our model also relies on an external
notion of ambiguity. However, this is not the case, for it has been shown by
Ghirardato et al. [19] that, if the set of outcomes is sufficiently rich, any mixture of
state-contingent utility profiles can be obtained subjectively. Our analysis can be
fully reformulated in terms of such ‘‘subjective mixtures,’’ and hence requires no
external device.

The related literature

In addition to the mentioned paper of Gilboa and Schmeidler [22], there are
several papers that share features, objectives, or methods with this paper.
Our approach to modelling ambiguity is closely related to that of Klaus Nehring.

In particular, Nehring was the first to suggest using the maximal independent
restriction of the primitive preference relation, which turns out to be equivalent to
our k�; to model the ambiguity that a DM appears to perceive in a problem. He
spelled out this proposal in an unpublished conference presentation of 1996, in which
he also presented the characterization of the perceived ambiguity set C for MEU and
CEU preferences when the state space is finite and utility is linear.3

In the recent [31], Nehring develops some of the ideas of the 1996 talk. The first
part of that paper moves in a different direction than this paper, as it employs an
incomplete relation that reflects probabilistic information exogenously available to
the DM. The second part is closer to our work. In a setting with infinite states and
consequences, Nehring defines a DM’s unambiguous preference by the maximal
independent restriction of the primitive preferences over bets. He characterizes such
definition and shows that under certain conditions it is equivalent to the one
discussed here. His analysis mainly differs from ours in two main respects. The first is
that his preferences induce an underlying set C satisfying a range convexity property.
The second is that he also investigates preferences that do not satisfy an assumption
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that he calls ‘‘utility sophistication’’, which is satisfied automatically by the
preferences discussed here. A consequence of the range convexity of C is that
CEU preferences can be utility sophisticated only if they maximize SEU, a
remarkable result that does not generalize to the preferences we study (whose C may
not be convex-ranged).
A final major difference between Nehring’s mentioned contributions and the

present paper is that he does not envision any differential interpretation for the set of
probabilities that represents the DM’s revealed ambiguity. To the best of our
knowledge, the only papers that employ differentials of preference functionals in
studying ambiguity averse preferences are the recent Carlier and Dana [4] and
Marinacci and Montrucchio [24].4 Both papers focus on Choquet preference
functionals, and they look at the Gateaux derivatives of Choquet integrals as a
device for characterizing the core of the underlying capacities [28], or for obtaining a
more direct computation of Choquet integrals in optimization problems [4].
In a recent paper, Siniscalchi [36] characterizes axiomatically a special case of our

preference model—to be later called ‘‘piecewise linear’’ preferences—whose
representation also involves a set of probabilities. The relation between his set P
and our C are clarified in Section 5.2. He does not explicitly focus on the distinction
between ambiguity and ambiguity attitude. On the other hand, unlike us he
emphasizes the requirement that each prior in the set yield the unique SEU
representation of the DM’s preferences over a convex subset of acts.
There exist several papers that propose behavioral notions of unambiguous events

or acts (e.g., [14,30]), but do not address the distinction between ambiguity and the
DM’s reaction to it. We refer the reader to [18] for a more detailed comparison of
our notion of unambiguous events and acts with the ones proposed in these papers.
Here, we limit ourselves to underscoring an important difference between our
‘‘relation-based’’ approach to modelling ambiguity and the ‘‘event-based’’ approach
of these papers. Suppose that f and g are ambiguous acts such that f dominates g

statewise. Then, we find that f is unambiguously preferred to g; while the ‘‘event-
based’’ papers do not. In general, there are aspects of ambiguity that a ‘‘relation-
based’’ theory can describe, but the ‘‘event-based’’ theories cannot. We are not aware
of any instance in which the converse is true.
As to the papers that discuss ambiguity aversion, the closest to our work is

Ghirardato and Marinacci [21]. They do not obtain a separation of ambiguity and
ambiguity attitude, but we show that once that separation is achieved by the
technique we propose, their notion of ambiguity attitude is consistent with ours. In
light of this, we refer the reader to the introduction of [21] for discussion of the
relation of what we do with other works that address the characterization of
ambiguity attitude.
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Outline of the paper

The paper is organized as follows. After introducing some basic notation and
terminology in Section 1, we present the basic axiomatic model in Section 2. Sections
3 and 4 form the decision-theoretic core of the paper. First, we discuss the
unambiguous preference relation and its characterization by a set of possible
scenarios. Then, we present a general representation theorem and the characteriza-
tion of ambiguity attitude. The differential interpretation of the set of possible
scenarios and related results are presented in Section 5. Section 6 presents the
axiomatization of the a-MEU model. Section 7 concludes and briefly reviews the
extensions that are presented in detail in [18].
The paper has two appendices. Appendix A presents some functional-analytic

results that are employed in most arguments, along with some detail on Clarke
differentials, their properties and representation. Appendix B contains proofs for the
results in the main body of the paper.

1. Preliminaries and notation

Consider a set S of states of the world, an algebra S of subsets of S called events,
and a set X of consequences. We denote by F the set of all the simple acts: finite-
valued S-measurable functions f : S-X : Given any xAX ; we abuse notation by
denoting xAF the constant act such that xðsÞ ¼ x for all sAS; thus identifying X

with the subset of the constant acts in F: Finally, for f ; gAF and AAS; f A g

denotes the act which yields f ðsÞ for sAA and gðsÞ for sAAc 
 S\A:
For convenience (see the discussion in the next section), we also assume that X is a

convex subset of a vector space. For instance, this is the case if X is the set of all the
lotteries on a set of prizes, as in the classical setting of Anscombe and Aumann [1]. In
view of the vector structure of X ; for every f ; gAF and lA½0; 1�; we can thus define
the mixed act lf þ ð1� lÞgAF as in footnote 1. We model the DM’s preferences on
F by a binary relation k: As usual, g and B respectively denote the asymmetric
and symmetric parts of k:
We let B0ðSÞ denote the set of all real-valued S-measurable simple functions, or

equivalently the vector space generated by the indicator functions 1A of the events
AAS: If fAF and u :X-R; uð f Þ is the element of B0ðSÞ defined by uð f ÞðsÞ ¼
uð f ðsÞÞ for all sAS: We denote by baðSÞ the set of all finitely additive and bounded
set-functions on S: If jAB0ðSÞ and mAbaðSÞ; we write indifferently

R
j dm or mðjÞ:

A nonnegative element of baðSÞ that assigns value 1 to S is called a probability, and it
is typically denoted by P or Q: Since baðSÞ is (isometrically isomorphic to) the norm
dual of B0ðSÞ;5 all of its subsets inherit a weak� topology, for example, a net Pa of
probabilities weak� converges to a probability P if and only if PaðAÞ-PðAÞ for all
AAS:
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Given a functional I : B0ðSÞ-R; we say that I is: monotonic if IðjÞXIðcÞ for all
j;cAB0ðSÞ such that jðsÞXcðsÞ for all sAS; constant additive if Iðjþ aÞ ¼
IðjÞ þ a for all jAB0ðSÞ and aAR; positively homogeneous if IðajÞ ¼ aIðjÞ for all
jAB0ðSÞ and aX0; constant linear if it is constant additive and positively
homogeneous.

2. Invariant biseparable preferences

In this section, we introduce the basic preference model that is used throughout
the paper, and show that it generalizes all the popular models of ambiguity-sensitive
preferences.
The model is characterized by the following five axioms:

Axiom 1 (Weak order). For all f ; g; hAF: (1) either fkg or gkf ; (2) if fkg and

gkh; then fkh:

Axiom 2 (Certainty independence). If f ; gAF; xAX ; and lAð0; 1�; then

fkg3lf þ ð1� lÞxklg þ ð1� lÞx:

Axiom 3 (Archimedean axiom). If f ; g; hAF; fgg; and ggh; then there exist

l; mAð0; 1Þ such that

lf þ ð1� lÞhgg and ggmf þ ð1� mÞh:

Axiom 4 (Monotonicity). If f ; gAF and f ðsÞkgðsÞ for all sAS; then fkg:

Axiom 5 (Nondegeneracy). There are f ; gAF such that fgg:

With the exception of axiom 2, all the axioms are standard and well understood.
Axiom 2 was introduced by Gilboa and Schmeidler [22] in their characterization of
MEU preferences. It requires that independence hold whenever acts are mixed with a
constant act x:
The following representation result is easily proved by mimicking the arguments

of Gilboa and Schmeidler [22, Lemmas 3.1–3.3].

Lemma 1. A binary relation k on F satisfies axioms 1–5 if and only if there exists a

monotonic, constant linear functional I : B0ðSÞ-R and a nonconstant affine function

u :X-R such that

fkg3Iðuð f ÞÞXIðuðgÞÞ: ð2Þ

Moreover, I is unique and u unique up to a positive affine transformation.

Axiom 2 is responsible for the constant linearity of the functional I : As we show in
[17], it is also necessary for the independence of the preference functional I from the
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chosen normalization of u: While the axiom may restrict ambiguity attitude in some
fashion, such separation of utility and beliefs is key to the analysis in this paper.
We call a preference k satisfying axioms 1–5 an invariant biseparable preference.

The adjective biseparable (originating from Ghirardato and Marinacci [20,21]) is due
to the fact that the representation on binary acts of such preferences satisfies the
following separability condition: Let r : S-R be defined by rðAÞ 
 Ið1AÞ: Then, r is
a normalized and monotone set-function (a capacity) and for all x; yAX such that
xky and all AAS;

IðuðxAyÞÞ ¼ uðxÞrðAÞ þ uðyÞð1� rðAÞÞ: ð3Þ

The adjective invariant refers to the mentioned invariance of I to utility normal-
ization, which is not necessarily true of the more general preferences in [20] (see [17]
for details).
Some of the best-known models of decision making in the presence of ambiguity

employ invariant biseparable preferences. However, these models incorporate
additional assumptions on how the DM reacts to ambiguity, i.e., whether he
exploits hedging opportunities or not. These assumptions are summarized in the
following axiom:

Axiom 6. For all f ; gAF such that fBg:

(a) (Ambiguity neutrality) ð1
2
Þf þ ð1

2
ÞgBg:

(b) (Comonotonic ambiguity neutrality) ð1
2
Þf þ ð1

2
ÞgBg if f and g are comonotonic.6

(c) (Ambiguity hedging) ð1
2
Þf þ ð1

2
Þgkg:

Axiom 6(c) is due to Schmeidler [34], and it says that the DM will in general prefer
the mixture, possibly a hedge, to its components.7 The other two are simple
variations on that property.
It is a matter of modifying known results in the literature to show the

consequences of these three properties on the structure of the functional I in
Lemma 1 (and its restriction r).8

Proposition 2. Let k be a preference satisfying axioms 1–5. Then

* k satisfies axiom 6(a) if and only if r is a probability on ðS;SÞ and IðjÞ ¼
R
j dr

for all jAB0ðSÞ:
* k satisfies axiom 6(b) if and only if IðjÞ ¼

R
j dr for all jAB0ðSÞ; where the

integral is taken in the sense of Choquet.
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terminology.
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* k satisfies axiom 6(c) if and only if there is a nonempty, weak� compact and convex

set D of probabilities on ðS;SÞ such that IðjÞ ¼ minPAD

R
j dP for all jAB0ðSÞ:

Moreover, D is unique.

Thus, a DM who satisfies axioms 1–5 and is indifferent to hedging opportunities
satisfies the SEU model. A DM who is indifferent to hedging opportunities when
they involve comonotonic acts (but may care otherwise) satisfies the CEU model of
Schmeidler [34], with beliefs given by the capacity r:
On the other hand, a DM who uniformly likes ambiguity hedging opportunities

chooses according to a ‘‘maxmin EU’’ decision rule. Indeed, axioms 1–5 and 6(c)
are the axioms proposed by Gilboa and Schmeidler [22] to characterize MEU
preferences—that for reasons to be made clear below are henceforth referred to as 1-
MEU. It is natural to interpret the size of D as representing the ambiguity that the
DM may perceive in the decision problem, but a problem with such interpretation is
the fact that the set D appears in Gilboa and Schmeidler’s analysis only as a result of
the assumption of ambiguity hedging.
It therefore seems that the DM’s revealed ambiguity cannot be disentangled from

his behavioral response to such ambiguity.
In the next section, we show that it is possible to separate a representation of

ambiguity from the DM’s behavioral reaction to it. For the sake of better assessing
such separation, it is important to notice here that axioms 1–5 do not impose ex ante

constraints on the DM’s reaction to ambiguity (as, say, ambiguity hedging does).
We reiterate that the choice to retain the classical Anscombe-Aumann setting used

by Gilboa and Schmeidler [22] is only motivated by the intention of putting our
contribution in sharper focus. The ‘‘subjective mixtures’’ of Ghirardato et al. [19] can
be employed to extend the analysis in this paper to the case in which X does not have
an ‘‘objective’’ vector structure (i.e., it is not convex), as long as it is sufficiently rich.
Unless otherwise indicated, for the remainder of this paperk is tacitly assumed to

be an invariant biseparable preference (i.e., to satisfy axioms 1–5), and I and u are
the monotonic, constant linear functional and utility index that represent k in the
sense of Lemma 1.

3. Priors and revealed ambiguity

3.1. Unambiguous preference

As explained in the introduction, our point of departure is a relation derived from
k that formalizes the idea that hedging/speculation considerations do not affect the
ranking of acts f and g:

Definition 3. Let f ; gAF: Then, f is unambiguously preferred to g; denoted fk�g; if

lf þ ð1� lÞhklg þ ð1� lÞh

for all lAð0; 1� and all hAF:
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The unambiguous preference relation is clearly incomplete in most cases. We
collect some of its other properties in the following result.

Proposition 4. The following statements hold:

1. If fk�g then fkg:
2. For every x; yAX ; xk�y iff xky: In particular, k� is nontrivial.
3. k� is a preorder.
4. k� is monotonic: if f ðsÞkgðsÞ for all sAS; then fk�g:
5. k� satisfies independence: for all f ; g; hAF and lAð0; 1�;

fk�g3lf þ ð1� lÞhk�lg þ ð1� lÞh:

6. k� satisfies the sure-thing principle: for all f ; g; h; h0AF and AAS;

fAhk�gAh3f A h0
k

�gAh0:

7. k� is the maximal restriction of k satisfying independence.9

Thus, unambiguous preference satisfies both the classical independence condi-
tions. It is a refinement of the state-wise dominance relation, and the maximal
restriction of the primitive preference relation satisfying independence.
The last point of the proposition shows that if we turned our perspective around

and defined unambiguous preference as the maximal restriction ofk that satisfies the
independence axiom, we would find exactly our k

�: As mentioned earlier, this
second approach was suggested by Nehring in a 1996 talk (see footnote 3).10 While
eventually the approaches reach the same conclusions, we prefer the approach taken
in this paper as it is directly linked to more basic behavioral considerations about
hedging and speculation.

3.2. Revealed ambiguity

We now show that the unambiguous preference relationk
� can be represented by

a set of probabilities, in the spirit of a well-known result of Bewley [3]. (An
analogous result is found in [31].)

Proposition 5. There exists a unique nonempty, weak� compact and convex set C of

probabilities on S such that for all f ; gAF;

fk�g3

Z
S

uð f Þ dPX

Z
S

uðgÞ dP for all PAC: ð4Þ
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9That is, if k��Dk and k
�� satisfies independence, then k

��Dk
�:

10Nehring [31] independently introducesk� and observes, in a setting with infinite states, its equivalence
to the approach taken in his 1996 talk. He also provides further motivation for his approach.
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In words, f is unambiguously preferred to g if and only if every probability PAC
assigns a higher expected utility to f in terms of the function u obtained in Lemma 1.
It is natural to refer to each prior PAC as a ‘‘possible scenario’’ that the DM
envisions, so that unambiguous preference corresponds to preference in every

scenario. Given an act fAF; we will refer to the mapping fPðuð f ÞÞ : PACg that
associates to every probability PAC the expected utility of f as the expected utility

mapping of f (on C).

Remark 1. A natural question that arises in applications is under which
conditions the probabilities in the set C are all countably additive, provided S
is a s-algebra. It turns out that the following extension of the monotone
continuity property of Villegas [38] and Arrow [2] is necessary and sufficient (see
also [6]).11

Monotone continuity: For all x; yAX ; if Ank| and ygz; then yk�xAnz for some n:

The interpretation is analogous to that given by Villegas and Arrow. For any
vanishing sequence of events, there is an event which is so small that it is close to
being unambiguously impossible.
In our view, the set C of probabilities represents formally the ambiguity that the

DM displays in the decision problem. Hereafter we offer a remark in support of this
interpretation. In Section 5 we provide further argument by showing the differential
nature of C:
Consider two DMs with respective preference relationsk1 andk2 (whose derived

relations are subscripted accordingly). Given our interpretation of k�; it is natural
to posit that if a DM has a richer unambiguous preference, it is because he behaves
as if he is better informed about the decision problem. Formally, k1 reveals more

ambiguity than k2 if for all f ; gAF:

fk�
1 g ) fk�

2 g:

It turns out that this comparative definition of revealed ambiguity is equivalent to
the inclusion of the sets of priors Ci’s.

Proposition 6. The following statements are equivalent:

(i) k1 reveals more ambiguity than k2:
(ii) u1 is a positive affine transformation of u2 and C1+C2:

In words, the size of the set Cmeasures the perception of ambiguity we attribute to
a DM. The larger C is, the more ambiguity the DM appears to perceive in the
decision problem. In particular, no DM reveals less ambiguity than one who reveals
a singleton set C ¼ fPg: In such case, k� is complete. It follows that k� ¼ k; that
is, the DM is a SEU maximizer with subjective probability P:
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Summarizing the results obtained so far, we have shown that C represents what we
call the DM’s revealed ambiguity, and we have concluded that the DM reveals some

ambiguity in a decision problem if C is not a singleton. Such characterization of
revealed ambiguity does not rely on any assumption on the DM’s reaction to it. We
now turn our attention to the latter, which is the force that drives the relation
between the expected utility mapping and the DM’s evaluation of an act.

4. Enter ambiguity attitude: the representation

We begin our discussion of ambiguity attitude with the following observation.

Proposition 7. Let I and u be respectively the functional and utility obtained in

Lemma 1, and C the set obtained in Proposition 5. Then

min
PAC

Pðuð f ÞÞpIðuð f ÞÞpmax
PAC

Pðuð f ÞÞ: ð5Þ

That is, the functionals onF defined by minPAC Pðuð�ÞÞ and maxPAC Pðuð�ÞÞ—that
respectively correspond to the ‘‘worst-’’ and ‘‘best-case’’ scenario evaluations within
the set C—provide bounds to the DM’s evaluation of every act. We now use this
sandwiching property to obtain a nontrivial formal description of the ambiguity
attitude of the DM, via a decomposition of the functional I :

4.1. Crisp acts

It is first of all important to illustrate that revealed ambiguity already partitionsF
into sets of acts with ‘‘similar ambiguity.’’ The following relation on the setF is key:
For any f ; gAF; write f^g if there exist a pair of consequences x; x0AX and weights

l; l0Að0; 1� such that
lf þ ð1� lÞxB�l0g þ ð1� l0Þx0; ð6Þ

where B� denotes the symmetric component of the unambiguous preference
relation. Such relation^ can be simply characterized in terms of the expected utility
mappings of the acts:

Lemma 8. For every f ; gAF; the following statements are equivalent:

(i) f^g:
(ii) The expected utility mappings fPðuð f ÞÞ : PACg and fPðuðgÞÞ : PACg are a

positive affine transformation of each other: there exist a40 and bAR such that

Pðuð f ÞÞ ¼ aPðuðgÞÞ þ b for all PAC: ð7Þ

(iii) The expected utility mappings fPðuð f ÞÞ : PACg and fPðuðgÞÞ : PACg are

isotonic: for all P;QAC;

Pðuð f ÞÞXQðuð f ÞÞ3PðuðgÞÞXQðuðgÞÞ:
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Statement (ii) of the lemma implies that ^ is an equivalence. Statement (iii) is
helpful in interpreting ^: Two functions are isotonic on a set if they order its
elements identically. Therefore, f^g is tantamount to saying that f and g order
possible scenarios identically: the best scenario for f is best for g; the worst for g is
worst for f ; etc. That is, f and g have identical dependence on the ambiguity the DM
displays.
As it will be seen presently, the equivalence classes of^ play an important role in

our representation. Given fAF; denote by ½ f � the equivalence class of ^ that
contains f and byF=^ the quotient ofF with respect to^; i.e., the collection of all

equivalence classes. Clearly, ½ f � contains all acts that are unambiguously indifferent
to f (take l ¼ 1 in Eq. (6)), but it may contain many more acts.
It follows immediately from the lemma above that all constants are^-equivalent;

that is, for all x; yAX ; we have yA½x�: However, the class ½x� contains also acts which
are not constants. The following behavioral property of acts, inspired by a property
that Kopylov [24] calls ‘‘transparency’’ (as his terminology suggests, he interprets it
differently from us), is key in understanding the structure of ½x�:

Definition 9. The act kAF is called crisp if for all f ; gAF and lAð0; 1Þ;

fBg ) lf þ ð1� lÞkBlg þ ð1� lÞk:

The set of crisp acts is denoted by K:

That is, an act is crisp if it cannot be used for hedging other acts. Intuitively, this
suggests that a crisp act’s evaluation is not affected by the ambiguity the DM
displays in the decision problem. The following characterization validates this
intuition:

Proposition 10. For every kAF; the following statements are equivalent:

(i) k is crisp.
(ii) k^x for some xAX :
(iii) For every P;QAC;

R
uðkÞ dP ¼

R
uðkÞ dQ:

(iv) For every fAF and lA½0; 1�;

I ½uðlk þ ð1� lÞf Þ� ¼ lIðuðkÞÞ þ ð1� lÞIðuð f ÞÞ:

Statement (ii) shows thatK ¼ ½x�:Moreover, notice that it follows from statement
(iv) of this proposition and the observation after Proposition 6 that if every act is
crisp, the DM displays no ambiguity (i.e., he satisfies SEU).

4.2. The representation theorem

We now have all the necessary elements to formulate our main representation
theorem, wherein we achieve the formal separation of revealed ambiguity and the
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DM’s reaction to it. Interestingly, it turns out to be a generalized Hurwicz a-
pessimism representation in which the set of priors is generated endogenously.

Theorem 11. Let k be a binary relation on F satisfying axioms 1–5. Then there exist

a nonempty, weak� compact and convex set C of probabilities on S; a nonconstant

affine function u :X-R; and a function a :F=^-½0; 1� such that k is represented by

the functional I : B0ðSÞ-R defined by

Iðuð f ÞÞ ¼ að½ f �Þmin
PAC

Z
uð f Þ dP þ ð1� að½ f �ÞÞmax

PAC

Z
uð f Þ dP; ð8Þ

and u and C represent k� in the sense of Eq. (4). Moreover, C is unique, u is unique up

to a positive affine transformation, and the restriction of the function a to F=^\K is

unique.

Clearly, the 1-MEU preference model and more generally the a-MEU preference
model in which a is a constant aA½0; 1� (that is characterized axiomatically in Section
6), are special cases of the representation above. Also, observe that when C ¼ fPg
every act is crisp. Hence, the function a disappears from the representation, which
reduces to SEU.
Two analytical observations on this representation are in order. First, notice that

if f and g are noncrisp acts and f^g; then að½ f �Þ ¼ að½g�Þ: If f and g have identical
dependence on ambiguity, the DM’s reaction to the ambiguity of f is identical to his
reaction to the ambiguity of g: Second, observe that for any fAF\K; the coefficient
að½ f �Þ only depends on the expected utility mapping fPðuð f ÞÞ : PACg of f on C: As
a result, the same is true of DM’s evaluation Iðuð f ÞÞ of any act fAF: The profile of
expected utilities of f (as a function over C) completely determines the DM’s
preference. This is a key feature of our representation, which is also enjoyed by the
model studied by Siniscalchi [36].

Remark 2. It is routine to obtain the following converse to Theorem 11. Take a
nonempty, weak� compact and convex set C of probabilities, an affine function u and
define, via Eq. (7), an equivalence ^ on F: Then, given a : F=^-R; if the

functional I defined by Eq. (8) is monotonic it induces a relation k which satisfies
axioms 1–5.

4.3. An index of ambiguity aversion

It is intuitive to interpret the function a as an index of the ambiguity aversion of
the DM: The larger að½ f �Þ; the bigger the weight the DM gives to the ‘‘pessimistic’’
evaluation of f given by minPACPðuð f ÞÞ: The following simple result verifies this
intuition in terms of the relative ambiguity aversion ranking of Ghirardato and
Marinacci [21]. In our setting, the latter is formulated as follows: k1 is more
ambiguity averse than k2 if for all fAF and all xAX ; f k1 x implies f k2 x:
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Proposition 12. Let k1 and k2 be invariant biseparable preferences, and suppose that

k1 and k2 reveal identical ambiguity.12 Then,k1 is more ambiguity averse than k2 if

and only if a1ð½ f �ÞXa2ð½ f �Þ for every fAF\K:

We conclude that the function a is a complete description of the DM’s ambiguity

attitude in relation to the revealed ambiguity described by C:
In closing this section, we observe that it follows from Proposition 12 that there

are always DMs which are more and less ambiguity averse than the DM whose
preference is k: In fact, the best- and worst-case scenario evaluations define
invariant biseparable preferences that satisfy these descriptions, since they
correspond to a constantly equal to 0 and 1, respectively. In a sense, they describe
the DM’s ‘‘ambiguity averse side’’ and his ‘‘ambiguity loving side.’’ However, as
these DMs do not necessarily satisfy the SEU model, they may not make the
preference ambiguity averse in the sense of Ghirardato and Marinacci [21].

5. Revealed ambiguity is a differential

In this section we turn back to the set C derived in Proposition 5, showing that it is
equal to the Clarke differential at 0 of the functional I obtained in Lemma 1. This
provides further support to our interpretation of C; and at the same time yields a
separate, operational, route for constructing a preference’s set of possible scenarios.
Suppose first that the DM’s preferences satisfy axioms 1–5 and 6(a); i.e., there is a

probability P on S such that Iðuð f ÞÞ ¼ Pðuð f ÞÞ: Being linear, I is Gateaux
differentiable with derivative everywhere equal to P:13 The DM’s beliefs can thus be
obtained by calculating the Gateaux derivative of I at any jAB0ðSÞ; for instance at
j 
 0: Using economic terminology (and assuming that S is finite) this is restated as
follows: the probability PðsÞ of state s gives the shadow price for increases of the
DM’s utility in state s:14

In contrast, if the DM’s preferences do not satisfy axiom 6(a), the functional I

may not be Gateaux differentiable everywhere, and even where it is, the Gateaux
derivatives may differ from one point to another. Intuitively, because of the presence
of ambiguity the shadow price for state s could depend on the structure of the act
being evaluated. There are many different shadow prices.
A natural theoretical solution to this nondifferentiability problem is to allow for a

more general notion of differentiability. For instance, suppose that the DM’s
preferences satisfy axioms 1–5 and 6(c), so that as shown in Proposition 2 they can be
represented by maxmin expected utility with a set of priors D: Then, the functional I

is monotonic, constant linear and concave, so that, while not necessarily Gateaux
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and u2 are equivalent.

13 In this discussion, we abuse terminology and identify the linear functional Pð�Þ—which is the real

Gateaux derivative of I—with the probability P that induces it.
14 In the case of monetary payoffs, looking at derivatives gurantees that we can ignore the shape of the

utility function: The range of payoffs is infinitesimal.
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differentiable, it does have a nonempty superdifferential (see, e.g., [33]). One could
therefore think of using the superdifferential @IðjÞ of I at j 
 0 (which contains
@IðjÞ for every jAB0ðSÞ) as a possible description of the collection of shadow prices
compatible with the DM’s preferences.
Interestingly, calculating the superdifferential @Ið0Þ of such I yields exactly the set

of priors D: That is, the set of probabilities D of Gilboa and Schmeidler [22] can be
obtained as derivative of the preference representation I : In this perspective, as the
superdifferential of such an I coincides with its Gateaux derivative when the latter
exists, SEU corresponds to the special case in which @Ið0Þ ¼ fPg:
For a preference k that only satisfies axioms 1–5—and therefore does not

necessarily induce a concave I—we can use a generalization of the superdifferential
due to Clarke [9], which is widely used in the literature on nonsmooth optimization.

Definition 13. Given a locally Lipschitz functional I : B0ðSÞ-R; its Clarke (lower)

directional derivative at j in the direction x is defined by

I3ðj; xÞ ¼ lim inf
c-j
tk0

Iðcþ txÞ � IðcÞ
t

:

The Clarke differential of I at j is the set of linear functionals that dominate the
Clarke derivative I3ðj; �Þ: That is,

@IðjÞ ¼ fmAbaðSÞ : mðxÞXI3ðj; xÞ; 8xAB0ðSÞg:

A monotonic and constant linear functional I ; such as that obtained in Lemma 1,
is Lipschitz and hence has a nonempty Clarke differential. Indeed, for an I with such
properties Clarke differentials are sets of probabilities; that is, all the mA@IðjÞ are
normalized and positive. If I is also concave, then its Clarke differentials and its
superdifferentials coincide (see [9]). This justifies our usage of the same symbol @I to
denote both sets.15

We now show that the set C is equal to the Clarke differential of I at 0 (which
contains @IðjÞ for every jAB0ðSÞ). Thus, the set of possible scenarios coincides with
the appropriately generalized notion of derivative of the preference functional. That
is, analogously to what happens in the SEU and 1-MEU case, our generalized
‘‘beliefs’’ can be obtained from the functional I by differentiation.

Theorem 14. Let k be a binary relation satisfying axioms 1–5, and I and C the

functional and set of probabilities obtained in Lemma 1 and Proposition 5, respectively.
Then

C ¼ @Ið0Þ:

Clearly, this calculus characterization is useful in providing an operational method
for assessing a DM’s revealed ambiguity C; based on the computation of the Clarke
differential at 0: However, it proves enlightening also for purely theoretical reasons.
We next discuss these aspects in more detail.
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5.1. Some theoretical consequences

First of all, from the mentioned equivalence of the Clarke differential and the
superdifferential for concave I it follows immediately that C ¼ D whenever k

satisfies axiom 6(c). In other words, for a 1-MEU preference the set of priors
corresponds to the set of possible scenarios. (A result that was proved for finite S by
Nehring, as reported in his 1996 talk; see footnote 3, and cf. his different
generalization in [31]).
We can also use the differential characterization to draw some conclusions on the

relation between the comparatively-based notion of ambiguity aversion of
Ghirardato and Marinacci [21] and the ideas in this paper. Begin by considering
the following two subsets of priors.

Definition 15. Given a functional I : B0ðSÞ-R; the core of I is the set

CoreðIÞ 
 fmAbaðSÞ : mðxÞXIðxÞ; 8xAB0ðSÞg:

The anti-core of I is the set

ErocðIÞ 
 fmAbaðSÞ : mðxÞpIðxÞ; 8xAB0ðSÞg:

As our choice of terminology suggests,16 when I is a Choquet integral with respect
to a capacity r; we have [21, Corollary 13] that

CoreðIÞ ¼ CoreðrÞ and ErocðIÞ ¼ ErocðrÞ:

However, these notions apply also to preferences which are not CEU. Indeed, ifk is
a 1-MEU preference, then [21, Corollary 14] CoreðIÞ ¼ D: Clearly, both CoreðIÞ and
ErocðIÞ could be empty, and they are simultaneously nonempty if and only if I is
linear.
The elements of CoreðIÞ (resp. ErocðIÞ) are the possible beliefs of SEU preferences

X which are less (resp. more) ambiguity averse than k in the sense of Ghirardato
and Marinacci [21]: for all fAF and xAX ; fkx ) fXx (resp. fXx ) fkx). The
next result shows that they also describe possible scenarios in the sense of this paper.

Proposition 16. Let I be a monotonic, constant linear functional. Then

CoreðIÞ,ErocðIÞD@Ið0Þ:

Moreover, CoreðIÞ ¼ @Ið0Þ if and only if I is concave, while ErocðIÞ ¼ @Ið0Þ if and

only if I is convex.

The second statement of the proposition shows that CoreðIÞ contains all the
possible scenarios if and only if I is concave; that is, k is a 1-MEU preference with
set of priors D ¼ CoreðIÞ: Differently put, while Ghirardato and Marinacci’s
‘‘benchmark measures’’ of k (the elements of CoreðIÞ) are possible scenarios, they
exhaust the set C only when k has extreme aversion to revealed ambiguity.
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5.2. An operational consequence

A useful operational consequence of the characterization of C as a Clarke
differential can be obtained the special case in which the state space S is finite; i.e.,
S ¼ fs1; s2;y; sng: (This is mainly for expositional purposes. The result can be
extended to an S which is a compact metric space; see Appendix A for the details.)
In such a case, the Clarke differential at 0 can be given the following

sharp representation in terms of the standard gradients of I (see Corollary A.5 in
Appendix A):

@Ið0Þ ¼ cofrIðjÞ : jAOg; ð9Þ

where O is any subset of Rn such that I is differentiable on O and Oc has Lebesgue
measure zero. (By Rademacher’s Theorem it can simply be the domain of
differentiability of I :)
We mention in passing that Eq. (9) provides further motivation for our

interpretation of the set C as revealed ambiguity. For, given a functional I that
has Gateaux derivatives almost everywhere (possibly different across points), each
derivative can be interpreted as a ‘‘possible probabilistic scenario’’ that is implicitly
used when evaluating a certain subset of acts. Thus, we can look at the collection of
the Gateaux derivatives of the preference functional I as a set-valued ‘‘belief ’’
associated with I : Alongside Theorem 14, Eq. (9) shows that the set C also fits this
definition of ‘‘belief.’’
To see the operational import of Eq. (9), assume that the preference functional I is

also piecewise linear. That is, there exists a countable family fClglAL of convex cones

such that:

* Rn ¼
S

l Cl ;
* intCla| for each l;
* I is linear on each Cl :

On finite state spaces, Choquet integrals are piecewise linear functionals; the same is
true of the preference functionals studied by Castagnoli et al. [5] and Siniscalchi
[36].17

Given a piecewise linear I ; it is simple to describe its @Ið0Þ: As I is linear on each
cone Cl ; there is a probability vector Pl corresponding to the unique linear extension
of IjCl

to Rn: By Eq. (9), we then have (see Corollaries A.6 and A.8 in Appendix A)

that

@Ið0Þ ¼ cofPl : lALg: ð10Þ

This equation shows that there exists a simple connection between our C and the
collections of probabilities fPl : lALg derived in [5,36]. For CEU preferences,
Eq. (10) enables us to retrieve C from the capacity r; as explained in the next
example.
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Example 17. Let I be a Choquet integral with respect to a capacity r: Set

Cs ¼ fjARn : jðssð1ÞÞXjðssð2ÞÞX?XjðssðnÞÞg

for each permutation s of f1;y; ng and observe that I is linear on each convex cone
Cs: In fact,

IðjÞ ¼
Z

S

j dr ¼
Z

S

j dPs;

where Ps is the probability defined by

PsðssðiÞÞ ¼ rðfssð1Þ; ssð2Þ;y; ssðiÞgÞ � rðfssð1Þ; ssð2Þ;y; ssði�1ÞgÞ

for each i ¼ 1;y; n: Hence, I is piecewise linear with respect to the collection
fCsgsAPerðnÞ; where PerðnÞ is the set of all the permutations of f1;y; ng: By Eq. (10),
we then have

C ¼ cofPs : sAPerðnÞg: ð11Þ

In other words, in the Choquet case (with finite states) the set C is simply the
convex hull of the set of all the Ps; that is, the convex hull generated by the
probabilities used in calculating the Choquet integral as we vary the monotonicity of
the act being evaluated. We thus generalize a result obtained, in the case of linear
utility, by Nehring in a 1996 talk (see footnote 3).

When the functional I is also concave—i.e., when IðjÞ ¼
R
j dr; with r

supermodular18—Proposition 16 and Eq. (11) imply that CoreðrÞ ¼ cofPs :
sAPerðnÞg: Thus, Shapley’s [35] well-known characterization of the core of a
supermodular capacity can also be obtained as a consequence of Theorem 14.

6. A special case: a-MEU preferences

As we observed just after Theorem 11, an interesting class of invariant biseparable
preferences are those whose ambiguity aversion index a is constant, the so-called
a-MEU preferences. Here we show their behavioral characterization.
For any act fAF; denote by Cð f Þ the set of the certainty equivalents of f for k;

i.e., the elements xAX such that xBf : It is easy to see that

Cð f Þ ¼ fxAX : for all yAX ; ykf implies ykx; fky implies xkyg:

We analogously set

C�ð f Þ 
 fxAX : for all yAX ; yk�f implies yk�x; fk�y implies xk�yg:

Intuitively, these are the constants that correspond to ‘‘possible’’ certainty
equivalents of f : (Recall that xk�y if and only if xky:)
The following result provides the characterization of C�ð f Þ in terms of the

expected utilities mapping on C:
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Proposition 18. For every fAF;

xAC�ð f Þ3min
PAC

Pðuð f ÞÞpuðxÞpmax
PAC

Pðuð f ÞÞ:

Moreover, uðC�ð f ÞÞ ¼ ½minPACPðuð f ÞÞ; maxPACPðuð f ÞÞ�:

Thus, uðC�ð f ÞÞ is the image of the expected utility mapping of f : the set of possible
expected utilities of f as we range over the scenarios in C:
We can now present the axiom that characterizes a-MEU preferences.

Axiom 7. For every f ; gAF; C�ð f Þ ¼ C�ðgÞ implies fBg:

The interpretation of the axiom is straightforward. For a DM who satisfies axiom
7, the set of certainty equivalents of f with respect tok

� contains all the information
the DM uses in evaluating f : Notice that the condition C�ð f Þ ¼ C�ðgÞ in the axiom
could also be rewritten as follows: for every xAX ; fk�x if and only if gk�x; and
xk�f if and only if xk�g:
In terms of the representation in Eq. (8), axiom 7 clearly guarantees that the

DM’s evaluation Iðuð f ÞÞ of act f depends only on the range
½minPACPðuð f ÞÞ;maxPACPðuð f ÞÞ� of the expected utility mapping fPðuð f ÞÞ :
PACg; rather than on the expected utility mapping itself. More surprisingly, such
dependence must be linear.

Proposition 19. Let k be a binary relation on F: The following statements are

equivalent:

(i) k satisfies axioms 1–5 and 7.
(ii) There exist a nonempty, weak� compact and convex set C of probabilities on S; a

nonconstant affine function u : X-R and aA½0; 1� such that k is represented by

the preference functional I : B0ðSÞ-R defined by

Iðuð f ÞÞ ¼ a min
PAC

Z
S

uð f Þ dP þ ð1� aÞmax
PAC

Z
S

uð f Þ dP; ð12Þ

and u and C represent k� in the sense of Eq. (4).

Moreover, C is unique, u is unique up to a positive affine transformation, and a is unique

if C is not a singleton.

The interpretation of a as the DM’s coefficient of aversion to ambiguity hinges
crucially on its uniqueness, which follows from the fact that C represents the relation
k

�: Such uniqueness does not rule out the possibility (see, e.g., [27]) that the
preference k may have a similar representation with a different coefficient b and a
different set of priors D: That is,

Iðuð f ÞÞ ¼ b min
PAD

Z
S

uð f Þ dP þ ð1� bÞmax
PAD

Z
S

uð f Þ dP: ð13Þ
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However, the next result shows that in such a case the set C must be included in
the set D:

Proposition 20. Let k be a preference that can be simultaneously represented as in

Eqs. (12) and (13). Then D+C; aXb if b41=2 and apb if bo1=2:

To understand the relation between a and b; notice that when we use D*C we are
attributing to the DM an inflated perception of ambiguity. We are thus
underestimating the magnitude of his reaction to the perceived ambiguity.
Summing up, among all the possible representations, the representation obtained

in Proposition 19 is made special by two considerations: (1) it is the only one yielding
a set C which represents k�; (2) it yields the smallest set of possible probabilistic
scenarios, i.e., it offers the closest approximation to SEU that can be obtained.

7. Conclusions

We have introduced the notion of unambiguous preference, and proved that such
a notion can be helpful in separating the DM’s preference representation in
‘‘revealed’’ ambiguity and ‘‘revealed’’ ambiguity aversion. We have also shown that
the DM’s revealed ambiguity can be seen as the (properly defined) generalized
differential of the DM’s preference representation, analogously to what happens in
the SEU case.
It is our hope that such separation—though artificial as any representation of

preferences by mathematical means—will be helpful in analyzing the impact of
ambiguity and ambiguity aversion/love in decision making situations of different
sorts.
It is worth remarking that some interesting consequences of the results in this

paper are already drawn in a companion paper [18]. For instance, we discuss a
natural dynamic extension of our static choice setting, and show that dynamic
consistency of the unambiguous preference relation—a property arguably more
defensible than dynamic consistency of the DM’s preferences in the presence of
ambiguity—characterizes exactly the so-called generalized Bayesian updating rule,
whereby all the probabilities in the set C are revised by Bayes’s rule.
From a more theoretical perspective, in [18] we also consider the issue of defining

unambiguous events and acts, which was briefly touched upon in our discussion of
crisp acts in this paper. We argue that, while it is natural to define unambiguous
events as those which correspond to crisp bets, the same is not necessarily true of
general (nonbinary) acts. In fact, if unambiguous acts are those which are
measurable with respect to a partition of unambiguous events, then any act which
is obtained by permuting the payoffs of an unambiguous act should also be
unambiguous. This is not in general true for crisp acts.
An important issue that is stimulated by our analysis and awaits further inspection

is the following ‘‘integrability’’ question: Given a set C of priors and the associated
relation ^; which functions can be ambiguity aversion indices for an invariant
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biseparable preference that has C as its revealed ambiguity? The characterization of
the set of such functions is made important by the (numerous) potential applications
in which external considerations dictate the structure of the set C:
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Appendix A. Functional analysis mini-kit

In this appendix we provide/review some functional analytic results and notions
that are used to prove the results in the main text, and in some cases are directly
mentioned in Section 5. Some of the proofs are standard, and are thus omitted.

A.1. Conic preorders

Given a non singleton interval K in the real line, we denote by B0ðS;KÞ the subset
of the functions in B0ðSÞ taking values in K :
We recall that a binary relation \ on B0ðS;KÞ is:

* a preorder if it is reflexive and transitive;
* continuous if jn\cn for all nAN; jn-j and cn-c imply j\c;
* conic if j\c implies ajþ ð1� aÞy\acþ ð1� aÞy for all yAB0ðS;KÞ and all

aA½0; 1�;19
* monotonic if jXc implies j\c:
* nontrivial if there exists j;cAB0ðS;KÞ such that j\c but not c\j:

Proposition A.1. For i ¼ 1; 2; let Ci be nonempty sets of probabilities on S and \i be

the relations defined on B0ðS;KÞ by

j\i c3
Z

S

j dPX

Z
S

c dP for all PACi:

Then

j\i c3
Z

S

j dPX

Z
S

c dP for all PAcow� ðCiÞ;

and the following statements are equivalent:

(i) j\1c ) j\2 c for all j and c in B0ðS;KÞ:
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(ii) cow� ðC2ÞDcow� ðC1Þ:
(iii) ½infPAC2

PðjÞ; supPAC2
PðjÞ�D½infPAC1

PðjÞ; supPAC1
PðjÞ� for all jAB0ðS;KÞ:

Proposition A.2. \ is a nontrivial, continuous, conic, and monotonic preorder on

B0ðS;KÞ if and only if there exists a nonempty set C of probabilities such that

j\c3
Z

S

j dPX

Z
S

c dP for all PAC: ðA:1Þ

Moreover, cow� ðCÞ is the unique weak� compact and convex set of probabilities

representing \ in the sense of Eq. (A.1).

A.2. Clarke derivatives and differentials: preliminary properties

We denote by BðSÞ the closure in the supnorm of B0ðSÞ; whose norm dual is
isometrically isomorphic to baðSÞ: If S is a compact metric space, we denote by CðSÞ
the set of all continuous functions on S; in this case, we always assume S to be the
Borel s-algebra. The norm dual of CðSÞ is isometrically isomorphic to the subset
caðSÞ of baðSÞ; consisting of all countably additive set functions.
In what follows, F denotes either B0ðSÞ; or BðSÞ; or CðSÞ; F� denotes F’s norm

dual.
A monotonic constant linear functional I : F-R is Lipschitz of rank 1. In fact,

given j;cAF; jpcþ jjj� cjj implies IðjÞpIðcÞ þ jjj� cjj; hence IðjÞ �
IðcÞpjjj� cjj; switching j and c yields jIðjÞ � IðcÞjpjjj� cjj: Thus, given a
monotonic constant linear functional I : F-R; we can study its Clarke derivatives
and Clarke differentials (as defined in Section 5). For easier reference to the existing
literature we remind that—instead of the Clarke lower directional derivative—many
authors use the Clarke upper directional derivative, defined by

I�ðj; xÞ ¼ lim sup
c-j
tk0

Iðcþ txÞ � IðcÞ
t

for every j; xAF and define the Clarke differential at j by

@IðjÞ ¼ fmAF� : mðxÞpI�ðj; xÞ; 8xAFg:
The observation that I�ðj; xÞ ¼ �I3ðj;�xÞ for every j; xAF shows that the two
approaches are completely equivalent.
We refer to Clarke [9] for properties of the Clarke derivative and differential.

Among them, the following are especially important:

1. For every j; xAF I3ðj; xÞ ¼ minmA@IðjÞ mðxÞ and I�ðj; xÞ ¼ maxmA@IðjÞ mðxÞ:
2. (Lebourg Mean Value Theorem) For all j;cAF; there exist gAð0; 1Þ and

mA@Iðgjþ ð1� gÞcÞ such that IðjÞ � IðcÞ ¼ mðj� cÞ:

Some additional properties of I3 and @Ið�Þ that we use below are stated next.
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Proposition A.3. Let I : F-R be a locally Lipschitz functional. Then:

1. If I is positively homogenous, I3ðj; �Þ ¼ I3ðaj; �Þ for all a40; and @IðjÞD@Ið0Þ
for all jAF: Moreover, I3ð0; xÞ ¼ infcAF Iðcþ xÞ � IðcÞ and I�ð0; xÞ ¼
supcAF Iðcþ xÞ � IðcÞ for all xAF:

2. If I is monotonic, then for all jAF the function I3ðj; �Þ is monotonic, and m is

positive for all mA@IðjÞ:
3. If I is constant additive, then for all jAF the functional I3ðj; �Þ is constant linear,

and mðSÞ ¼ 1 for all mA@IðjÞ:

Notice that it follows from this proposition that if I is monotonic and constant
linear, then for all jAB0ðSÞ we have @IðjÞD@Ið0Þ and @Ið0Þ consists of
probabilities.

A.3. Clarke differentials: representation on compact metric S

Suppose now that S is a compact metric state space. Notice that, for S finite, we
have

B0ðSÞ ¼ CðSÞ ¼ BðSÞ ¼ RjSj;

while for S infinite, CðSÞ is the only separable Banach space of the four.
A Borel subset N of CðSÞ is Haar-null if there exists a (not necessarily unique)

probability measure p on the Borel s-algebra of CðSÞ; such that pðjþ NÞ ¼ 0 for
each jACðSÞ:More generally, a subset N of CðSÞ is a Haar-null set if it is contained
in a Borel Haar-null set. Haar-null sets are closed under translation and countable
unions; see Christensen [7]. In finite dimensions (i.e., for finite S), Haar-nulls sets
coincide with the sets of Lebesgue measure 0. Using this terminology, Christensen [8]
shows that each real-valued locally Lipschitz function defined on a non-empty open
subset O of CðSÞ is Gateaux differentiable except on an Haar-null subset of O: In
fact, the following even stronger result is known.20 Here, r denotes a Gateaux
derivative.

Theorem A.4 (Thibault [37, Proposition 2.2]). Let J be a locally Lipschitz functional

defined on a non-empty open subset O of CðSÞ and let D 
 fjAO : rJðjÞ existsg:
Then for each Haar-null set NDCðSÞ and each jAO we have that

@JðjÞ ¼ cow�
w� � lim

i-N

rJðjiÞ : jiAD\N;ji-j
� �

:

Corollary A.5. Let J be a locally Lipschitz and positively homogeneous functional

defined on CðSÞ and let D 
 fjACðSÞ : rJðjÞ existsg: Then, for each Haar-null set

NDCðSÞ; we have that @Jð0Þ ¼ cow�frJðjÞ : jAD\Ng:
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Proof. Suppose J is Gateaux differentiable at jACðSÞ; then rjA@JðjÞ and, by
positive homogeneity, @JðjÞD@Jð0Þ: This proves that @Jð0Þ+cow�frJðjÞ :
jAD\Ng: Conversely, by the above theorem we have

@Jð0Þ ¼ cow�
w� � lim

i-N

rJðjiÞ : jiAD\N;ji-0

� �
:

But, for all jiAD\N such that ji-0 and w� � limi-N rJðjiÞ exists, we have

w� � lim
i-N

rJðjiÞA rJðjÞ : jAD\Nf gw�

Dcow� rJðjÞ : jAD\Nf g:

We conclude that @Jð0ÞDcow�frJðjÞ : jAD\Ng: &

Notice that the definition of piecewise linear functional of Section 5 can be
naturally be extended to functionals defined on CðSÞ (or B0ðSÞ; or BðSÞ). Obviously,
a piecewise linear functional is positively homogeneous, and if it is also locally
Lipschitz, then for all lAL there exists a unique mlAcaðSÞ such that JjCl

¼ ml : In the

sake of brevity, call fCl ;mlglAL a linear decomposition of J:

Corollary A.6. Let J be a locally Lipschitz and piecewise linear function defined on

CðSÞ; and fCl ;mlglAL a linear decomposition of J: Then,

@Jð0Þ ¼ cow�fml : lALg:

Proof. Clearly, J is Gateaux differentiable in intCl for each l; and rJðjÞ ¼ ml for

each jA intCl : In particular, cow�fml : lALgD@Jð0Þ:
For each l; bndCl is Haar-null (see [29, p. 1794]), hence N ¼

S
lAL and Cl

is Haar-null. Let D 
 fjACðSÞ : rJðjÞ existsg and observe that D\ND
CðSÞ\ND

S
lAL intCl : Therefore, frJðjÞ : jAD\NgDfml : lALg and @Jð0ÞD

cow�fml : lALg: &

Lemma A.7. Let H : BðSÞ-R be a monotonic, positively homogeneous and locally

Lipschitz functional. Denote by I (resp. J) the restriction of H to B0ðSÞ (resp. CðSÞ),
and by @I (resp. @J; resp. rJ) the Clarke differential of I (resp. Clarke differential of

J; resp. Gateaux derivative of J) relative to B0ðSÞ (resp. relative to CðSÞ). Then

@Hð0Þ ¼ @Ið0Þ:
Moreover, provided @Ið0ÞDcaðSÞ;

@Ið0Þ ¼ @Jð0Þ ¼ cofrJðjÞ : jAOg; ðA:2Þ

where O is any subset of CðSÞ on which J is Gateaux differentiable and such that

CðSÞ\O is Haar-null, and the closure is with respect to any one of the following weak�

topologies: sðcaðSÞ;CðSÞÞ; sðcaðSÞ;B0ðSÞÞ; sðcaðSÞ;BðSÞÞ:

Notice that, if I is obtained from an invariant biseparable preference k such that
k

� is monotone continuous, then @Ið0ÞDcaðSÞ:
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Proof. Just notice that, since B0ðSÞ is dense in BðSÞ and H is continuous, then
H�ð0; xÞ ¼ supcABðSÞ Hðcþ xÞ � HðcÞ ¼ supjAB0ðSÞ Iðjþ xÞ � IðjÞ ¼ I�ð0; xÞ for

all xAB0ðSÞ: Then, @Ið0Þ ¼ fmAbaðSÞ : mðxÞpH�ð0; xÞ; 8xAB0ðSÞg: Continuity
of H� and density of B0ðSÞ in BðSÞ yield

@Ið0Þ ¼ fmAbaðSÞ : mðxÞpH�ð0; xÞ; 8xABðSÞg ¼ @Hð0Þ:

Next, assume @Ið0ÞDcaðSÞ: Notice that monotonicity of H implies that @Hð0Þ ¼
@Ið0Þ consists of positive countably additive set functions. Therefore, jn;jABðSÞ
and jnmj or jnkj imply HðjnÞ-HðjÞ and H�ð0;jnÞ-H�ð0;jÞ:21
For all xACðSÞ;

H�ð0; xÞ ¼ sup
cABðSÞ

Hðcþ xÞ � HðcÞX sup
jACðSÞ

Jðjþ xÞ � JðjÞ ¼ J�ð0; xÞ:

On the other hand, for all xACðSÞ the set fcABðSÞ : Hðcþ xÞ � HðcÞpJ�ð0; xÞg
contains CðSÞ and it is closed under monotone pointwise limits, so that it coincides
with BðSÞ: It follows that H�ð0; xÞ ¼ J�ð0; xÞ if xACðSÞ:
As a consequence, @Jð0Þ ¼ fmAcaðSÞ : mðxÞpH�ð0; xÞ; 8xACðSÞg: If mA@Jð0Þ;

fxABðSÞ : mðxÞpH�ð0; xÞg is a set containing CðSÞ and closed under monotone
pointwise limits, so that it also coincides with BðSÞ: We can conclude that, since
@Ið0ÞDcaðSÞ; @Jð0Þ ¼ fmAcaðSÞ : mðxÞpH�ð0; xÞ; 8xABðSÞg ¼ @Hð0Þ ¼ @Ið0Þ:
Finally, @Jð0Þ ¼ @Ið0Þ ¼ @Hð0Þ is compact Hausdorff in the topologies

sðcaðSÞ;CðSÞÞ; sðcaðSÞ;B0ðSÞÞ; and sðcaðSÞ;BðSÞÞ: Since sðcaðSÞ;BðSÞÞ is finer
than the others, they all coincide on @Hð0Þ and Corollary A.5 concludes the
proof. &

Let H : BðSÞ-R be a monotonic, locally Lipschitz functional. Say that H is
properly piecewise linear if there exists a countable family fClglAL of convex cones

such that:

* BðSÞ ¼
S

l Cl ;
* intCl-CðSÞa| for each l;
* I is linear on each Cl :

Corollary A.8. Let H : BðSÞ-R be a monotonic, locally Lipschitz, properly piecewise

linear functional such that @Hð0ÞDcaðSÞ; and fCl ;mlglAL a linear decomposition
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sðbaðSÞ;BðSÞÞ-continuous. If jn;jABðSÞ and jnmj; then /jn; �Sm/j; �S (Levi’s Monotone Conver-

gence Theorem), therefore /jn; �S uniformly converges to /j; �S (Dini’s Theorem and the fact that

@Hð0Þ is sðbaðSÞ;BðSÞÞ-compact). Then, for all e40 there exists %nAN such that j/jn;mS�/j;mSjpe
for all mA@Hð0Þ and all nX %n: By the Lebourg Mean Value Theorem, for all nX %n there exist gnAð0; 1Þ
and mnA@Hðgnjn þ ð1� gnÞjÞD@Hð0Þ such that jHðjnÞ � HðjÞj ¼ j/jn;mnS�/j;mnSjpe; and

HðjnÞ-HðjÞ: Moreover, since /jn; �S converges to /j; �S uniformly on @Hð0Þ implies that

H�ð0;jnÞ ¼ max
mA@Hð0Þ

/jn;mS- max
mA@Hð0Þ

/j;mS ¼ H�ð0;jÞ:

The case jnkj is analogous.
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of H: Then

@Hð0Þ ¼ cofml : lALg;

where the closure is taken with respect to the sðcaðSÞ;BðSÞÞ topology.

Proof. Let J be the restriction of H to CðSÞ and Kl ¼ Cl-CðSÞ: Clearly, ðKl ;mlÞ
is a linear decomposition of J: Lemma A.7 and Corollary A.6 yield
@Hð0Þ ¼ @Jð0Þ ¼ cofml : lALg: &

Appendix B. Proofs of the results in the main text

We begin with two preliminary remarks and a piece of notation that are used
throughout this appendix. First, given the representation in Lemma 1, we observe
without proof that

fuð f Þ : fAFg 
 fjAB0ðSÞ : j ¼ uð f Þ; for some fAFg ¼ B0ðS; uðXÞÞ:

Second, notice that it is w.l.o.g. to assume that uðX Þ+½�1; 1�: Finally, given a
nonempty, convex and weak� compact set C of probabilities on S; we denote for
every jAB0ðSÞ;

CðjÞ ¼ min
PAC

PðjÞ; CðjÞ ¼ max
PAC

PðjÞ:

B.1. Proof of Proposition 4

Taking l ¼ 1 in the definition proves point 1. Next we prove thatk� is monotonic
(point 4). Suppose that f ðsÞkgðsÞ for all sAS: By axiom 2, for every hAF and
lAð0; 1�; lf ðsÞ þ ð1� lÞhðsÞklgðsÞ þ ð1� lÞhðsÞ for all sAS: Using axiom 4, we
thus obtain that lf þ ð1� lÞhklg þ ð1� lÞh: This shows that fk�g: If xky; then
the monotonicity of k� yields xk�y: Along with point 1, this proves point 2. As to
point 3, reflexivity also follows from monotonicity. To show transitivity, suppose
that fk�g and gk�h: Then for all kAF and all lAð0; 1�; we have

lf þ ð1� lÞkklg þ ð1� lÞkklh þ ð1� lÞk:

This shows that fk�h:
Next, we prove the implication ) of point 5 (The other implication follows

immediately from the following Proposition 5, and it is not used in the proof of that
proposition). Given f ; g; hAF and lAð0; 1Þ; suppose that fk�g: Then for every
mAð0; 1� and every kAF; we have

ðlmÞf þ ð1� lmÞ ð1� lÞm
1� lm

h þ 1� m
1� lm

k

� �
kðlmÞg þ ð1� lmÞ ð1� lÞm

1� lm
h þ 1� m

1� lm
k

� �
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by definition of k�: Rearranging terms, we find

mðlf þ ð1� lÞhÞ þ ð1� mÞkkmðlg þ ð1� lÞhÞ þ ð1� mÞk;

which implies lf þ ð1� lÞhk�lg þ ð1� lÞh; since the choice of m and k was
arbitrary. The case l ¼ 1 is trivial. Point 6 follows immediately from the following
Proposition 5. (It is not used in the proof of that proposition.)
Finally, assume that k

�� is an independent binary relation such that fk��g

implies fkg: Then fk��g implies lf þ ð1� lÞhk��lg þ ð1� lÞh for all hAF and
lAð0; 1�; hence lf þ ð1� lÞhklg þ ð1� lÞh for all hAF and lAð0; 1�; finally fk�g:
This proves 7.

B.2. Proof of Proposition 5

Notice that fk�g iff Iðluð f Þ þ ð1� lÞuðhÞÞXIðluðgÞ þ ð1� lÞuðhÞÞ for all hAF
and all lAð0; 1�: Define \ on B0ðS; uðXÞÞ by setting

j\c3Iðljþ ð1� lÞyÞXIðlcþ ð1� lÞyÞ; 8yAB0ðS; uðX ÞÞ; 8lAð0; 1�:

Clearly, fk�g iff uð f Þ\uðgÞ: It is routine to show, either using the properties of k�

or those of I ; that \ is a nontrivial, monotonic and conic preorder on B0ðS; uðX ÞÞ:
Moreover, if jn\cn for all nAN; jn-j; cn-c; then Iðljn þ ð1� lÞyÞXIðlcn þ
ð1� lÞyÞ; for all lAð0; 1�; all yAB0ðS; uðXÞÞ; and all nAN: Since I is supnorm
continuous, it follows that j\c:
We have thus shown that \ is a conic, continuous, monotonic, nontrivial

preorder on B0ðS; uðXÞÞ: By Proposition A.2 it follows that there exists a unique

nonempty, weak� compact and convex set C of probabilities on S such that

j\c3
Z

S

j dPX

Z
S

c dP for all PAC;

which immediately yields the statement.

B.3. Proof of Remark 1

The following result is the claim in the remark. Recall that S is here assumed to be
a s-algebra.

Proposition B.1. Let k be an invariant biseparable preference. Then the following

statements are equivalent:

(i) For all x; y; zAX such that ygz; and all sequences of events fAngnX1DS with

Ank|; there exists %nAN such that yk�xA %nz:
(ii) C consists of countably additive probabilities.

Proof. (i) ) (ii): Let Ank| and let y; zAX be such that ygz: W.l.o.g. assume
uðyÞ ¼ 1 and uðzÞ ¼ 0 and let zk ¼ ð1=kÞy þ ð1� ð1=kÞÞz so that uðzkÞ ¼ 1=k (hence
zkgz). By monotone continuity, for all kAN there exists %nAN such that zkk

�yA %nz:
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Whence 1=kXPðA %nÞ for all PAC; but PðAnÞ is decreasing, and thus
limn-N PðAnÞp1=k: Clearly this implies that all the Ps belonging to C are
countably additive.
(ii) ) (i): As C is a weak� compact set of countably additive probabilities, it is

weak compact. By Theorem IV.9.1 of Dunford and Schwartz [10] it follows that if

e40 and Ank| there exists %n such that PðAnÞoe for all nX %n and all PAC: Now, let
x; y; zAX be such that ygz: If zkx; we have yk�zk�xAnz for all n (z statewise
dominates xAnz). If xgz; there exists %n such that PðAnÞo½uðyÞ � uðzÞ�=½uðxÞ � uðzÞ�
for all nX %n and all PAC: That is, uðyÞ4ðuðxÞ � uðzÞÞPðAnÞ þ uðzÞ ¼ PðuðxAnzÞÞ:
We conclude that yk�xA %nz: &

B.4. Proof of Proposition 6

Lemma B.2. Let Y be a vector space and u; v be two nonzero linear functionals on Y :
One and only one of the following statements is true:

* u ¼ av for some a40:
* (yAY : uðyÞ vðyÞo0:

Proof. Clearly the two statements cannot be both true. Assume, by contradiction
that both are false. That is: there exist u; v nonzero linear functionals on Y such that
uaav for all a40; and uðyÞvðyÞX0 for all yAY :
Then Y ¼ ½uv40�,½u ¼ 0�,½v ¼ 0� ¼ ½uv40�,ker u,ker v: ker u and ker v are

maximal subspaces of Y ; hence Y ¼ /zS"ker u for some zAY such that uðzÞ40:
Were ker u ¼ ker v; since for all yAY there exist bAR and xAker u such that y ¼
bz þ x; it would follow that uðyÞ ¼ b uðzÞ ¼ uðzÞ

vðzÞ bvðzÞ ¼ uðzÞ
vðzÞ vðyÞ; which is absurd.

Else, ker uaker v; so there exist y0Aker u\ker v and y00Aker v\ker u (ker u and ker v

are maximal subspaces), we can choose y0 and y00 such that vðy0Þ40 and uðy00Þo0:
Finally, uðy0 þ y00Þvðy0 þ y00Þ ¼ uðy00Þvðy0Þo0; which is absurd. &

Corollary B.3. Let X be a nonempty convex subset of a vector space and u; v be two

nonconstant affine functionals on X : There exist aARþþ and bAR such that u ¼ av þ b

iff uðx1ÞXuðx2Þ ) vðx1ÞXvðx2Þ for every x1; x2AX :

Proof. Necessity being trivial, we only prove sufficiency. Notice that

Y ¼ ftðx1 � x2Þ : tARþþ; x1; x2AXg

is a vector space and the functionals

û : tðx1 � x2Þ/tðuðx1Þ � uðx2ÞÞ;

v̂ : tðx1 � x2Þ/tðvðx1Þ � vðx2ÞÞ

are well defined, nonzero, and linear on Y : Moreover,

ûðtðx1 � x2ÞÞX0 ) uðx1ÞXuðx2Þ ) vðx1ÞXvðx2Þ ) vðtðx1 � x2ÞÞX0:
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Therefore )yAY such that ûðyÞv̂ðyÞo0: By the previous lemma, there exists a40
such that û ¼ av̂: Finally, fix x0AX ; for all xAX

uðxÞ � uðx0Þ ¼ ûð1ðx � x0ÞÞ ¼ av̂ð1ðx � x0ÞÞ ¼ avðxÞ � avðx0Þ

so uðxÞ ¼ avðxÞ þ ½uðx0Þ � avðx0Þ�; set b ¼ ½uðx0Þ � avðx0Þ�: &

Proof of Proposition 6. (i) ) (ii): For all x; yAX ;

u1ðxÞXu1ðyÞ ) xk1y ) xk�
1y ) xk�

2y ) xk2y ) u2ðxÞXu2ðyÞ:

By Corollary B.3, this implies that we can assume u1 ¼ u2 ¼ u: Moreover, for all
f ; gAF; fk�

1 g ) fk�
2 g: That is,

Pðuð f ÞÞXPðuðgÞÞ 8PAC1 ) Pðuð f ÞÞXPðuðgÞÞ 8PAC2;

which by Proposition A.1 (applied to B0ðS; uðX ÞÞ) implies C2DC1:
(ii) ) (i): Obvious.

B.5. Proof of Proposition 7

The result follows immediately (take c 
 0) from the following lemma, that will be
of further use.

Lemma B.4. For all fAF;

min
PAC

Pðuð f ÞÞ ¼ inf
gAF
lAð0;1�

I uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	� �

¼ inf
cAB0ðSÞ

fIðuð f Þ þ cÞ � IðcÞg

and

max
PAC

Pðuð f ÞÞ ¼ sup
gAF
lAð0;1�

I uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	� �

¼ sup
cAB0ðSÞ

fIðuð f Þ þ cÞ � IðcÞg:

Proof. Clearly ð1�lÞ
l uðgÞ : gAF; lAð0; 1�

n o
DB0ðSÞ: Conversely, for all cAB0ðSÞ

there exists aAð0; 1Þ and gAF such that ac ¼ uðgÞ hence c ¼ 1
auðgÞ: Since

ð1�lÞ
l

ranges from 0 to N (recall that lAð0; 1�), there exists l0 such that 1
a ¼

ð1�l0Þ
l0 and

c ¼ ð1�l0Þ
l0 uðgÞ: We have thus proved the second equality in both equations.
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Take xminAX that satisfies uðxminÞ ¼ Cðuð f ÞÞ:22 We have fk�xmin; that is, for all
gAF and lAð0; 1�:

Iðuðlxmin þ ð1� lÞgÞÞpIðuðlf þ ð1� lÞgÞÞ
or

IðluðxminÞ þ ð1� lÞuðgÞÞpIðluð f Þ þ ð1� lÞuðgÞÞ:
Therefore,

luðxminÞ þ Iðð1� lÞuðgÞÞpIðluð f Þ þ ð1� lÞuðgÞÞ
from which we obtain

uðxminÞpI uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	

:

Finally,

Cðuð f ÞÞp inf
gAF
lAð0;1�

I uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	� �

:

Conversely, let xinfAX be such that23

uðxinfÞ ¼ inf
gAF
lAð0;1�

I uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	� �

:

Then,

uðxinfÞpI uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	

for all gAF and lAð0; 1�; whence fk�xinf : That is, uðxinfÞpCðuð f ÞÞ; or

inf
gAF
lAð0;1�

I uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	� �

pmin
PAC

Pðuð f ÞÞ;

which concludes the proof. &

B.6. Proof of Lemma 8

(i) ) (ii): Suppose that for some l; l0 and x; x0; lf þ ð1� lÞ xB�l0g þ ð1� l0Þx0:
Applying Eq. (6) of Proposition 5, this is equivalent to

lPðuð f ÞÞ þ ð1� lÞuðxÞ ¼ l0 PðuðgÞÞ þ ð1� l0Þuðx0Þ for all PAC:

ARTICLE IN PRESS

22Notice that such xmin exists. In fact, there exist x0; x00AX such that x0
kf ðsÞkx00 for all sAS; then

x0
k

�fk�x00 and uðx0ÞXPðuð f ÞÞXuðx00Þ for all PAC: Finding xmin is now trivial.
23Again, notice that such xinf exists. In fact, choosing x0; x00AX such that x0

kf ðsÞkx00; it follows

uðx0ÞXIðuð f ÞÞX inf
gAF
lAð0;1�

I uð f Þ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	� �

Xu xminð Þ:

Finding xinf is now trivial.
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It follows that for all PAC;

Pðuð f ÞÞ ¼ l0

l
PðuðgÞÞ þ 1

l
½ð1� l0Þuðx0Þ � ð1� lÞuðxÞ�;

so that we get the conclusion by letting a ¼ l0
l and b ¼ 1

l½ð1� l0Þuðx0Þ �ð1� lÞuðxÞ�:
(ii) ) (i): Suppose that

Pðuð f ÞÞ ¼ aPðuðgÞÞ þ b for all PAC:

Suppose first that ao1: Then, let l ¼ a: By renormalizing the utility function if
necessary, we can assume that b=ð1� lÞAuðXÞ; so that there is xAX for which
uðxÞ ¼ b=ð1� lÞ: It follows that fB�lg þ ð1� lÞx: The case of a41 is dealt with by
rewriting the equation as follows:

PðuðgÞÞ ¼ 1

a
Pðuð f ÞÞ � b

a
for all PAC;

and proceeding as above to get lf þ ð1� lÞxB�g: Finally, suppose that a ¼ 1:
Having chosen (renormalizing utility if necessary) x; x0AX such that uðxÞ ¼ 0 and

uðx0Þ ¼ b; it follows that 1
2

f þ 1
2
xB� 1

2
g þ 1

2
x0:

(ii) ) (iii): Obvious.
(iii) ) (ii): Notice that the expected utility mappings

P/Pðuð f ÞÞ;

P/PðuðgÞÞ

are affine functionals on C: Therefore, (by the standard uniqueness properties of
affine representations) they are isotonic iff one is a positive affine transformation
of the other.

B.7. Proof of Proposition 10

(i) ) (iii): Suppose that k is crisp. Then for all fBg and lAð0; 1�; lk þ ð1�
lÞfBlk þ ð1� lÞg: That is,

IðluðkÞ þ ð1� lÞuð f ÞÞ ¼ IðluðkÞ þ ð1� lÞuðgÞÞ;

or, equivalently since Iðuð f ÞÞ ¼ IðuðgÞÞ;

I uðkÞþ 1� l
l

uð f Þ
� 	

�I
1� l
l

uð f Þ
� 	

¼I uðkÞ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	

:

Therefore, for all c; yAB0ðSÞ such that IðcÞ ¼ IðyÞ;
IðuðkÞ þ cÞ � IðcÞ ¼ IðuðkÞ þ yÞ � IðyÞ:

If IðcÞaIðyÞ; set a ¼ IðcÞ � IðyÞ: Then, IðcÞ ¼ Iðyþ aÞ; whence
IðuðkÞ þ cÞ � IðcÞ ¼ IðuðkÞ þ yþ aÞ � Iðyþ aÞ;

so that again

IðuðkÞ þ cÞ � IðcÞ ¼ IðuðkÞ þ yÞ � IðyÞ:
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By Lemma B.4, we conclude that if k is crisp

CðuðkÞÞ ¼ inf
jAB0ðSÞ

fIðuðkÞ þ cÞ� IðcÞg¼ sup
jAB0ðSÞ

fIðuðkÞ þ cÞ � IðcÞg ¼ CðuðkÞÞ:

(iii) ) (iv): Notice that (iii) and Lemma B.4 imply

inf
jAB0ðSÞ

fIðuðkÞ þ cÞ � IðcÞg ¼ CðuðkÞÞ ¼ CðuðkÞÞ ¼ sup
jAB0ðSÞ

fIðuðkÞ þ cÞ � IðcÞg;

thus IðuðkÞ þ cÞ � IðcÞ ¼ IðuðkÞÞ for all cAB0ðSÞ; whence for all lAð0; 1� and all
gAF:

I uðkÞ þ 1� l
l

uðgÞ
� 	

� I
1� l
l

uðgÞ
� 	

¼ IðuðkÞÞ

or

IðluðkÞ þ ð1� lÞuðgÞÞ ¼ lIðuðkÞÞ þ ð1� lÞIðuðgÞÞ:

Finally, notice that the above equation is trivially true if l ¼ 0:
(iv) ) (i): If fBg and lAð0; 1Þ; it follows from (iv) that

IðluðkÞ þ ð1� lÞuð f ÞÞ ¼ lIðuðkÞÞ þ ð1� lÞIðuð f ÞÞ

¼ lIðuðkÞÞ þ ð1� lÞIðuðgÞÞ

¼ IðluðkÞ þ ð1� lÞuðgÞÞ;

whence lk þ ð1� lÞfBlk þ ð1� lÞg:
(ii) ) (iii): Since k^x; there exist l; l0 and y; y0 such that

lk þ ð1� lÞyB�l0x þ ð1� l0Þy0;

which, applying Proposition 5, is equivalent to

lPðuðkÞÞ þ ð1� lÞuðyÞ ¼ l0uðxÞ þ ð1� l0Þuðy0Þ;

for every PAC: This immediately implies (iii).
(iii)) (ii): Since PðuðkÞÞ ¼ g for every PAC; we just need to choose xAX such that

uðxÞ ¼ g; and then apply Proposition 5 to see that kB�x; yielding (ii).

B.8. Proof of Theorem 11

Suppose that k satisfies axioms 1–5. Let I and u respectively be the preference
functional and utility that represent k obtained in Lemma 1, and C the weak�

compact and convex set of probabilities on S that represents k
� obtained in

Proposition 5.

We have observed in Proposition 7 that Cðuð f ÞÞpIðuð f ÞÞpCðuð f ÞÞ for all fAF:
Hence, if f is crisp then Iðuð f ÞÞ ¼ Pðuð f ÞÞ for every PAC: If f is not crisp, then
there exists aðuð f ÞÞA½0; 1� such that

Iðuð f ÞÞ ¼ aðuð f ÞÞCðuð f ÞÞ þ ð1� aðuð f ÞÞÞCðuð f ÞÞ:
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Such aðuð f ÞÞ is unique, for

aðuð f ÞÞ ¼ Iðuð f ÞÞ � Cðuð f ÞÞ
Cðuð f ÞÞ � Cðuð f ÞÞ

:

We see that the function að�Þ provides the sought representation. We are therefore
done if we prove that a can be defined on F=^\K:

Suppose that f ; geK and f^g: Then, there exist a pair of constants x; x0AX and

weights l; l0Að0; 1� such that
lf þ ð1� lÞxB�l0g þ ð1� l0Þ x0: ðB:1Þ

It follows from point 1 of Proposition 4 that Eq. (16) implies Iðluð f Þ þ ð1�
lÞuðxÞÞ ¼ Iðl0uðgÞ þ ð1� l0Þuðx0ÞÞ; so that by the constant linearity of I ; lIðuð f ÞÞ þ
ð1� lÞ uðxÞ ¼ l0IðuðgÞÞ þ ð1� l0Þ uðx0Þ: As a consequence,

Iðuð f ÞÞ ¼ l0

l
IðuðgÞÞ þ 1

l0
½ð1� l0Þ uðx0Þ � ð1� lÞ uðxÞ�:

If we set b ¼ 1

l0
½ð1� l0Þuðx0Þ � ð1� lÞuðxÞ� and a ¼ l0=l; we then obtain

Iðuð f ÞÞ ¼ aIðuðgÞÞ þ b:

Notice that Eq. (B.1) also implies that for every PAC;

lPðuð f ÞÞ þ ð1� lÞuðxÞ ¼ l0PðuðgÞÞ þ ð1� l0Þuðx0Þ:

That is, Pðuð f ÞÞ ¼ aPðuðgÞÞ þ b for every PAC: We conclude that

aðuð f ÞÞ ¼ Iðuð f ÞÞ � Cðuð f ÞÞ
Cðuð f ÞÞ � Cðuð f ÞÞ

¼ aIðuðgÞÞ þ b�maxPACðaPðuðgÞÞ þ bÞ
min
PAC

ðaPðuðgÞÞ þ bÞ �max
PAC

ðaPðuðgÞÞ þ bÞ

¼ aðuðgÞÞ:

Therefore, aðuð f ÞÞ ¼ aðuðgÞÞ whenever f^g: If, with a little abuse of notation, we
let að½ f �Þ ¼ aðuð f ÞÞ; we find that a : ðF=^\KÞ-½0; 1�; as claimed.

B.9. Proof of Proposition 12

Since k1 and k2 reveal identical ambiguity, we have C1 ¼ C2 ¼ C and we can
assume u1 ¼ u2 ¼ u: If C is a singleton, then k1 and k2 coincide, hence k1 is more

ambiguity averse than k2 and vacuously a1ð½ f �ÞXa2ð½ f �Þ for every fAF\K ¼ |:
Therefore, we assume jCj41:
Suppose thatk1 is more ambiguity averse thank2: Fix fAF\K; and let xAX be

indifferent to f for k1: We have:

a1ð½ f �ÞCðuð f ÞÞ þ ð1� a1ð½ f �ÞCðuð f ÞÞ ¼ uðxÞpa2ð½ f �ÞCðuð f ÞÞ þ ð1� a2ð½ f �ÞCðuð f ÞÞ:
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That is,

a2ð½ f �ÞðCðuð f ÞÞ � Cðuð f ÞÞÞ þ Cðuð f ÞÞXa1ð½ f �ÞðCðuð f ÞÞ � Cðuð f ÞÞÞ þ Cðuð f ÞÞ;

whence a1ð½ f �ÞXa2ð½ f �Þ:
Conversely, suppose that a1ð½ f �ÞXa2ð½ f �Þ for every fAF\K: For all xAX ;

fk1x3 a1ðuð f ÞÞðCðuð f ÞÞ � Cðuð f ÞÞÞ þ Cðuð f ÞÞXuðxÞ

) a2ðuð f ÞÞðCðuð f ÞÞ � Cðuð f ÞÞÞ þ Cðuð f ÞÞXuðxÞ

) fk2 x:

On the other hand, for all fAK and all xAX ; we can take PAC to obtain:

fk1x3Pðuð f ÞÞXuðxÞ3fk2x:

B.10. Proof of Theorem 14

For all fAF; Lemma B.4 yields

max
PAC

Pðuð f ÞÞ ¼ sup
jAB0ðSÞ

fIðuð f Þ þ cÞ � IðcÞg;

while item 1 of Proposition A.3 yields

sup
cAB0ðSÞ

Iðuð f Þ þ cÞ � IðcÞ ¼ I�ð0; uð f ÞÞ ¼ max
PA@Ið0Þ

Pðuð f ÞÞ:

But, for all jAB0ðSÞ; there exist lAð0; 1Þ and fAF such that lj ¼ uð f Þ: Hence,

max
PAC

PðjÞ ¼ max
PAC

P
1

l
uð f Þ

� 	
¼ max

PA@Ið0Þ
P

1

l
uð f Þ

� 	
¼ max

PA@Ið0Þ
PðjÞ:

Since both C and @Ið0Þ are weak�-compact and convex subsets of baðSÞ; we
conclude that C ¼ @Ið0Þ:

B.11. Proof of Proposition 16

If m0A CoreðIÞ; then m0ðxÞXIðxÞXinfcAB0ðSÞ Iðcþ xÞ � IðcÞ ¼ I3ð0; xÞ ¼
minmA@Ið0Þ mðxÞ for all xAB0ðSÞ; which implies m0A@Ið0Þ:
If CoreðIÞ ¼ @Ið0Þ; then I3ð0; xÞ ¼ minmA@Ið0Þ mðxÞ ¼ minmACoreðIÞ mðxÞXIðxÞX

I3ð0; xÞ for all xAB0ðSÞ; so I3ð0; �Þ ¼ Ið�Þ and I is concave. Conversely, if I is concave
a standard result (see [9]) guarantees that @Ið0Þ ¼ CoreðIÞ: (The convex case is
analogous.)

B.12. Proof of Proposition 18

As we observed earlier, if yAX ; yk�f iff uðyÞ ¼ PðuðyÞÞXPðuð f ÞÞ for all PAC iff

uðyÞXCðuð f ÞÞ: Similarly, fk�y iff Cðuð f ÞÞXuðyÞ: Let x0; x00AX be such that
x0
kf ðsÞkx00 for all sAS: Since k� is monotonic, x0

k
�fk�x00; so that

uðx00ÞpCðuð f ÞÞpCðuð f ÞÞpuðx0Þ:
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Hence for all tA½Cðuð f ÞÞ; Cðuð f ÞÞ� there exists xt such that uðxtÞ ¼ t (recall that u is
affine and X is convex).

Let xAX satisfy Cðuð f ÞÞpuðxÞpCðuð f ÞÞ: If yk�f then uðyÞXCðuð f ÞÞXuðxÞ and
yk�x; analogously, if fk�y; then xk�y: We can conclude that xAC�ð f Þ:
Conversely, let xAC�ð f Þ; and take xmin; xmaxAX such that uðxminÞ ¼ Cðuð f ÞÞ and

uðxmaxÞ ¼ Cðuð f ÞÞ; xmaxk
�fk�xmin; hence xmaxk

�xk�xmin: That is,

Cðuð f ÞÞXuðxÞXCðuð f ÞÞ: This concludes the proof, as it amounts to saying that
C�ð f Þ ¼ fxAX : Cðuð f ÞÞpuðxÞpCðuð f ÞÞg;

while the existence of xmin; xmaxAX such that uðxminÞ ¼ Cðuð f ÞÞ and uðxmaxÞ ¼
Cðuð f ÞÞ guarantees that uðC�ð f ÞÞ ¼ ½Cðuð f ÞÞ;Cðuð f ÞÞ�:

B.13. Proof of Theorem 19

The proof of the theorem builds on the following lemma.

Lemma B.5. Let I : B0ðSÞ-R be a monotonic constant linear functional, and D a set

of probabilities such that

min
PAD

PðcÞpIðcÞpmax
PAD

PðcÞ

for all cAB0ðSÞ: If IðcÞ ¼ T minPAD PðcÞ;maxPADPðcÞð Þ for all cAB0ðSÞ; then

there exists bA½0; 1� such that

IðcÞ ¼ bmin
PAD

PðcÞ þ ð1� bÞmax
PAD

PðcÞ

for all cAB0ðSÞ: If D is not a singleton, b is unique.

Proof. If D is a singleton the result is trivial, so assume it is not. Since D is such that

min
PAD

PðcÞpIðcÞpmax
PAD

PðcÞ

for all cABðSÞ; for all j such that minPAD PðjÞomaxPAD PðjÞ there exists a unique
bðjÞA½0; 1� for which

IðjÞ ¼ bðjÞmin
PAD

PðjÞ þ ð1� bðjÞÞmax
PAD

PðjÞ;

a little algebra yields:

bðjÞ ¼ IðjÞ �maxPAD PðjÞ
minPAD PðjÞ �maxPAD PðjÞ

¼ � IðjÞ �maxPAD PðjÞ
maxPAD PðjÞ �minPAD PðjÞ ¼ �I

j�maxPAD PðjÞ
maxPAD PðjÞ �minPAD PðjÞ

� 	
:

But, IðcÞ ¼ TðminPAD PðcÞ;maxPAD PðcÞÞ for all cABðSÞ: Moreover,

maxPAD
j�maxPAD PðjÞ

maxPAD PðjÞ �minPAD PðjÞ

� 	
¼ 0
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and

minPAD
j�maxPAD PðjÞ

maxPAD PðjÞ �minPAD PðjÞ

� 	
¼ �1;

therefore,

bðjÞ ¼ �I
j�maxPAD PðjÞ

maxPAD PðjÞ �minPAD PðjÞ

� 	
¼ �Tð�1; 0Þ:

That is bðjÞ 
 b does not depend on j: &

Proof of Theorem 19. Let I ; u and C be the objects obtained in Lemma 1 and in
Proposition 5. It is enough to show that, for all jAB0ðSÞ; IðjÞ depends
only on minPAC PðjÞ and maxPAC PðjÞ: For, then we can set
TðminPAC PðjÞ;maxPAC PðjÞÞ ¼ IðjÞ and apply Lemma B.5.
Let j;cAB0ðSÞ be such that

min
PAC

PðjÞ ¼ min
PAC

PðcÞ and max
PAC

PðjÞ ¼ max
PAC

PðcÞ:

Take a40 such that aj; acABðS; uðXÞÞ and f ; gAF such that uð f Þ ¼ aj and
uðgÞ ¼ ac: Clearly,

min
PAC

Pðuð f ÞÞ ¼ min
PAC

PðuðgÞÞ and max
PAC

Pðuð f ÞÞ ¼ max
PAC

PðuðgÞÞ:

By Proposition 18,

C�ð f Þ ¼ u�1ð½Cðuð f ÞÞ;Cðuð f ÞÞ�Þ ¼ u�1ð½CðuðgÞÞ;CðuðgÞÞ�Þ ¼ C�ðgÞ

and Axiom 6 yields fBg; so that IðajÞ ¼ Iðuð f ÞÞ ¼ IðuðgÞÞ ¼ IðacÞ and IðjÞ ¼
IðcÞ: The converse is trivial.

B.14. Proof of Proposition 20

The uniqueness of I descending from Lemma 1 guarantees that

IðjÞ ¼ bmin
QAD

QðjÞ þ ð1� bÞmax
QAD

QðjÞ

for all jAB0ðSÞ: Then,
C ¼ @Ið0Þ

¼ @ bmin
QAD

Qð�Þ þ ð1� bÞmax
QAD

Qð�Þ
� 	

ð0Þ

D b @ min
QAD

Qð�Þ
� 	

ð0Þ þ ð1� bÞ @ max
QAD

Qð�Þ
� 	

ð0Þ

¼ bDþ ð1� bÞD:

On the other hand, IðjÞ ¼ aminPAC PðjÞ þ ð1� aÞmaxPACPðjÞ for all jAB0ðSÞ:

ARTICLE IN PRESS
P. Ghirardato et al. / Journal of Economic Theory 118 (2004) 133–173 171



www.manaraa.com

That is,

b min
QAD

Qð�Þ þ ð1� bÞmax
QAD

Qð�Þ ¼ amin
PAC

Pð�Þ þ ð1� aÞmax
PAC

Pð�Þ:

If C ¼ D; then clearly a ¼ b; and we are done. So suppose that CCD:
Let j be such that

%
c ¼ minPAC PðjÞomaxPACPðjÞ ¼ %c: A fortiori,

%
d ¼ minQADQðjÞomaxQADQðjÞ ¼ %d: Moreover,

1
2 %

c þ 1
2 %c ¼ 1

2 IðjÞ � 1
2Ið�jÞ ¼ 1

2%
d þ 1

2
%d:

Let c ¼ 1
2%
c þ 1

2%c to obtain

IðjÞ ¼ a
%
c þ ð1� aÞ%c ¼ c þ a

%
c þ ð1� aÞ%c � 1

2%
c � 1

2 %c ¼ c þ 1
2
� a

� 
ð%c �

%
cÞ

and, analogously,

IðjÞ ¼ c þ 1
2
� b

� 
ð %d �

%
dÞ:

Therefore,

1
2
� b

� 
ð %d �

%
dÞ ¼ 1

2
� a

� 
ð%c �

%
cÞ: ðB:3Þ

If b41=2 then a41=2 and 1
2
� a

� 
ð%c �

%
cÞ4 1

2
� a

� 
ð %d �

%
dÞ; so that Eq. (B.3) implies

a4b: Analogously, if bo1=2 then ao1=2 and 1
2
� a

� 
ð%c �

%
cÞo 1

2
� a

� 
ð %d �

%
dÞ; so that

Eq. (B.3) implies aob: This concludes the proof.
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